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Advanced RS Technology

RS technology has significantly improved the Earth observation ability.

The characterization of features on the earth surface.

LandSat-1 Spot-1 IKONOS QuickBird WorldView-1 GeoEye-1 WorldView-3LandSat-4
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Advanced RS Technology

RS technology has significantly improved the Earth observation ability.

The characterization of features on the earth surface.

LandSat-1 MightySat II EO-1 ISS DESIS GF-5 TEMPO JPSS-2EOS AM-1
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Applications of RS Images

Interpretation of RS images plays important roles in many real-world applications 

Information investigation Smart city Precision agriculture

Environ. monitoring Disaster assessment Land cover mapping
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Pixel-wise Classification

Pixel-wise classification for low resolution aerial image classification

Play.

Resid.

Pond

Individual pixels featured by 

distinct content of large area

Each pixel presents a scene of 

specific semantic category

Low resolution image Pixel-based classification
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Pixel-wise Classification

Pixel-wise classification for high resolution aerial image classification

Messy result by pixel-based classification 

More detail with spectral, texture, and structural information

Container area
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Segmentation-based Classification

Complex modeling process from pixels to semantics

Building

OBIA: relation modeling for over-segmented

regions is required for semantic scene recognition

Encoder

&

Decoder

End2end segmentation: large-scale 

and well-annotated pixel-wise labels
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Tile-level Classification

Complicated features and components as a whole of scene 

Raw image (HR) Tile extraction Semantic scenes Tile-level classification

High-resolution aerial image 

Container area Lake Expressway

Forest Residential area Roundabout



High-quality Classification

Current situation: Increasing demand for high-quality semantic classification 

Abundant RS dataIntensive observation 

Pixel-level classif.Tile-level classif.

Coarse result by tile-level classification and high computational cost for pixel-wise classification
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Model Adaption

Model optimization:  parameters from natural images transferred for RS images

Model transfer 

Object DetectionScene Classification Semantic segmentation Change Detection



Aerial Scene Parsing

Target: A full-scene semantic structure interpretation of the aerial image content

Human

annotation

Tile-level 

scene classification

Object-based

image analysis

End-to-end

semantic segmentation
Our method



Interpretation of RS Images

Image classification: transfer raw  imagery data into semantic information
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Motivation

 Potential of data-driven interpretation methods remains to be further liberated

and evaluated on large-scale available datasets.

 Insufficiency in learning and utilizing domain knowledge from the relevant

interpretation data and tasks.

 Bridging tile-level classification toward pixel-wise semantic labeling

 Unification of tile-level scene classification and OBIA for image interpretation

 Emphasis on tile-level interpretation with high-level semantics while neglecting

their homogeneous components in pixel level.

 Pixels are no longer isolated units, of which semantics are highly related to their

contextual information in high-resolution aerial images.

 Weak generalization ability of interpretation methods



 Background

 Revisiting Aerial Image Interpretation

 Introduction to Million-AID

 Aerial Scene Classification: A New Benchmark

 Knowledge Transfer: From Tile-level to Pixel-level 

 Conclusions

Outline
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Road Map

Interpretation prototypes develop with the improvement of  aerial image quality 
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Pixel-wise Classification 

 Aerial images with low resolution

 Sizes of  objects are smaller than the image resolution

 Spectral and texture attributes are mainly employed

 Pixel sampling and statistical analysis with content attributes

Low resolution image Pixel-wise image classification

Image Pixel sampling Pixel classification Land cover
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Segmentation-based Analysis 

 Object-based analysis

 Ground objects as basic units for semantic information identification

 Homogeneous segmentation by spectral, texture, and structural attributes

 lack semantic description, object relation modeling, scale challenge

Image with rich detail Object classificationHomogenous segments
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 End2end segmentation

 Simultaneously produce homogeneous segments and semantic classes  

 Improved architectures and feature integration to advance accuracy  

 Optimization with massive pixel labels, computational burden, generalization

High-resolution aerial image Semantic segmentation resultConvolutional encoder-decoder

Segmentation-based Analysis 
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Tile-level Understanding 

 Scene recognition within local area

 Complicated features and content as a whole with high-level knowledge

 Scene representation from handcrafted to deep learning features

 Coarse interpretation result, accuracy saturation of existing datasets 

Real-world complex content Course classification result

Object classification

Limited classes and scale
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Analysis

Pixels are highly related to their neighbors in high resolution aerial images

Low resolution: 

Isolated pixels as basic 

semantic units

High resolution:

Pixels must be considered 

with contextual information

Building

Building

Road

Road

Tree

Grass

Enlarged areas of

homogeneity Tree

Building

Building Road

Road

Grass

More rich detail with

Noisy information
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Analysis

Tile-level representation for high resolution aerial image classification

Raw image (HR) Tile representation Tile-level recognition Pixel-level parsing

Raw image (LR) Pixel-based Segmentation-based
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Tile-level Datasets

 Aerial scene datasets

 Small scale and poor diversity: small number of categories and instances

 Accuracy saturation: lack standard evaluation benchmarks
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Dataset Construction

 Semi-automatic scene image collection: integration of public geographical features

Geographical point, line, and plane features Scene image interpretation
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Semantic Categories

 Hierarchical category organization with land use standard

 First-level:

8 categories

 Second-level:

28 categories

 Third-level:

37 categories

Multi-class classification:

51 fine-grained classes

Multi-label classification:

73 hierarchical classes
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Dataset Scale

 Over 1M instances with unbalanced distribution: 2k to 45k samples in each category 
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Dataset Diversity

 Over 1M instances with unbalanced distribution: 2k to 45k samples in each category 

Scene 
diversity

Scale
variation

Complex.

Similarity

Apron Baseball field

Bridge Viaduct

Storage tank Wind turbine

Substation Wastewater plant
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Geographical Distribution

 Scenes around the world:  intensively distributed within human inhabited areas
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Baseline Setup

 Unified implementation of CNN library

 Benchmarking configurations

 Multi-class scene classification: 51 fine-grained scene categories

 Multi-label scene classification: 73 hierarchical semantic categories

 Evaluation metrics

 Multi-class scene classification: overall accuracy (OA), average accuracy (AA),

Kappa coefficient, mean of intersection-over-union (mIoU)

 Multi-label scene classification: per-class precision (CP), recall (CR), F1 (CF)

and overall precision (OP), recall (OR), F1 (OF)
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Results

 Results of Multi-class scene classification Results of Multi-class scene classification

 Results on different datasets with our framework

Performance of Single-label Scene Classification with different CNN models

OA Comparison Among Different Datasets

* Results using  our implemented CNN framework,
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Confusion Matrix

 Results of Multi-class scene classification Shallow network: AlexNet
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Confusion Matrix

 Results of Multi-class scene classification Deep network: DenseNet121
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Confusion Matrix

 Results of Multi-class scene classification More results

VGG16

DN169ResNet101

GoogleNet
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Results

 Results of Multi-label scene classification

Performance of Multi-label Scene Classification with different CNN models

 Challenging hierarchical multi-label classification

VGG16

DN169
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Scene Recognition

Parameter transfer & fine-tune learning
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AID

NWPU-RESISC45

 Transfer Knowledge from ImageNet and Million-AID for scene recognition
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Results on AID

 Accuracy comparison

Classification accuracy (%) on AID dataset using different initialization schemes

 Confusion matrices of different learning schemes

Scratch-GoogleNet ImageNet-DN169 Million-AID-ResNet101
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Results on AID

 Example images and predictions 
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Results on NWPU-RESISC45

 Accuracy comparison

Classification accuracy (%) on NWPU-RESISC45 dataset using different initialization schemes

 Confusion matrices of different learning schemes

Scratch-GoogleNet ImageNet-DN169 Million-AID-DN169



41

Results on NWPU-RESISC45

 Example images and predictions 
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Semantic Classification

 Transfer Knowledge from Million-AID for pixel-level image classification

Attention block

× +

U 1 S AM

LAM FF

DF

SF

Hierarchical attention network MSC & HSF modules Pixel-level  semantics  integration

Shared parameters

GID

GID

Million-AID

GID

Million-AID

GID

Million-AID

𝜔1

𝜔2

𝜔3

𝜔1

𝜔2

𝜔3

Homogenous segmentation

Million-AID

A

A
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Ablation Study

 Weights influence of different tasks 

 Corresponding training loss observation
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Comparison

 Quantitative comparison using different Modules 

 Quantitative comparison with SOTA methods
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Comparison

 Qualitative comparison with different Modules 

Input image GT Baseline MSC Ours
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Comparison

 Qualitative comparison with SOTA methods

Input image GT PT-GID Ours
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Summary

 A review of aerial image interpretation

 Classification prototypes develop with the improvement of image resolution

 Pixel-wise, segmentation-based, and tile-level classification methodologies are 

established, relying on visual characteristics of images with different resolutions

 Tile-level scene classification 

 We released a new large-scale dataset, Million-AID, for aerial scene classification

 Million-AID shows better transferability than ImageNet for aerial scene classification 

 Pixel-wise image parsing

 We verify the tremendous potential of transferring scene knowledge of Million-AID to 

advance aerial image interpretation from tile-level classification to pixel-wise labeling
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