Aerial Scene Parsing

From Tile-level Scene Classification to Pixel-wise Semantic Labeling

Gui-Song Xia

School of Computer Science, Wuhan University Institute of Artificial Intelligence, Wuhan University State Key Lab. LIESMARS, Wuhan University

Advanced RS Technology

RS technology has significantly improved the Earth observation ability.

	R				•					
LandSat-1	Land	Sat-4	Spot-1	IKONO	IS (QuickBird	WorldView	v-1 Geo	Eye-1	WorldView-3
1972	1975	1978	1982	1984	1986	1990	1993	-1998	1999	2001
LandSat-1	LandSat-2	LandSat-3	LandSat-4	LandSat-5	Spot-1	Spot-2	Spot-3	Spot-4	IKONOS	QuickBird
78m	78m	78m	30m	30m	10m	10m	10m	10m	1m	0.61m
18d	18d	18d	16d	16d	26d	26d	26d	26d	3d	1-6d
2002	2003	2007	2008	2009	-2011	2012	2014	-2016	2021	>
Spot-5	OrbView-3	WorldView-1	GeoEye-1	WorldView-2	Pleiades-1A	Spot-6	WorldView-3	WorldView-4	Legion	SCOUT
2.5m	1m	0.5m	0.41m	0.5m	0.5m	1.5m	0.31m	0.31m	0.29m	0.29m
26d	3d	1.7d	2-3d	1.1d	1d	1d	<1d	<1d	15t/d	24t/d

Advanced RS Technology

RS technology has significantly improved the Earth observation ability.

			· · · ·		T 1.5.	╟╤╢				
LandSat-1	EOS	AM-1	MightySat II	EO-1		ISS DESIS	GF-5	TEM	РО	JPSS-2
1972	-1986	1999	2000	-2000	2002	2008	2008	2018	-2018	2018
LandSat-1	NOAA-10	EOS AM-1	MightySat2.1	EO-1	ADEOS-2	IMS-1	HJ-1A	ISS	HysIS	GF5
8	20	36	145	220	115	64	115	235	316	330
0.475-12.6	0.669-14.5	0.62-14.385	0.45-1.05	0.4-25	0.45-0.95	0.4-0.95	0.45-0.95	0.4-1.0	0.4-2.4	0.4-2.5
2019	-2020	2021	2022	-2022	2022	2024	2024	2024	-2024	>
PRISMA	HyperScout2	GISAT-1	EnMAP	TEMPO	JPSS-2	FLEX	MTG-S1	METOP-SG A1	METOP-SG	A1
240	45	150	232	666	1305	300	1720	3936	16921	
0.4-2.5	0.4-14.0	0.9-2.5	0.42-2.45	0.29-0.74	3.9-15.3	0.5-0.78	4.6-14.3	0.270-2.385	3.62-15.5	

The characterization of features on the earth surface.

Applications of RS Images

Interpretation of RS images plays important roles in many real-world applications

Information investigation

Smart city

Precision agriculture

Environ. monitoring

Disaster assessment

Land cover mapping

Pixel-wise Classification

Pixel-wise classification for low resolution aerial image classification

Low resolution image

Pixel-based classification

Pixel-wise Classification

Pixel-wise classification for high resolution aerial image classification

Messy result by pixel-based classification

Segmentation-based Classification

Complex modeling process from pixels to semantics

End2end segmentation: large-scale and well-annotated pixel-wise labels

Tile-level Classification

Complicated features and components as a whole of scene

High-quality Classification

Current situation: Increasing demand for high-quality semantic classification

Coarse result by tile-level classification and high computational cost for pixel-wise classification

Model Adaption

Model optimization: parameters from natural images transferred for RS images

Aerial Scene Parsing

Target: A full-scene semantic structure interpretation of the aerial image content

Human annotation Tile-level scene classification

Object-based image analysis

End-to-end semantic segmentation

Our method

Interpretation of RS Images

Image classification: transfer raw imagery data into semantic information

Motivation

Bridging tile-level classification toward pixel-wise semantic labeling

- Unification of tile-level scene classification and OBIA for image interpretation
- Emphasis on tile-level interpretation with high-level semantics while neglecting their homogeneous components in pixel level.
- Pixels are no longer isolated units, of which semantics are highly related to their contextual information in high-resolution aerial images.

Weak generalization ability of interpretation methods

- Potential of data-driven interpretation methods remains to be further liberated and evaluated on large-scale available datasets.
- Insufficiency in learning and utilizing domain knowledge from the relevant interpretation data and tasks.

Outline

Background

Revisiting Aerial Image Interpretation

Introduction to Million-AID

Aerial Scene Classification: A New Benchmark

Knowledge Transfer: From Tile-level to Pixel-level

Conclusions

Road Map

Interpretation prototypes develop with the improvement of aerial image quality

Spectral and textural attributes of pixels are mainly employed for semantic classification.

Spectral and textural description: @Haralick et al., 1973; @Swain et al., 1991; @Manju-nath et al., 1996; @Ojala et al., 2002; @Xia et al., 2010. Statistical analysis: @Bruzzone et al., 1999; @Chen et al., 2008; @Li et al., 2010; @Li et al., 2011. @Camps-Valls et al., 2013; @Zhao et al., 2016. Learning classifiers: @Kavzoglu et al., 2003; @Lee et al., 2007; Review @Lu et al., 2007; @Mountrakis et al., 2011; @Belgiu et al., 2016; @Xia et al., 2018. Subpixel classification: @Wang, 1990; @Atkinson, 1997; Liu et al., 2005; @Somers et al., 2011;@Wang et al., 2017; @He et al., 2020; @Yu et al., 2021.

High-resolution image with richer spectral, textural, and structural detail for homogenous segmentation.

OBIA paradigm: @Blaschke et al., 2001; @Blaschke et al., 2014; Review @Hossain et al., 2019. Spectral-spatial segmentation: @Cheng et al., 2001; @Kaur et al., 2011; @Martha et al., 2011; @Han et al., 2018; @ Tang et al., 2020; @ Shang et al., 2021 Morphological methods: @Zhang et al., 2014; @Liu et al., 2015; @Yang et al., 2017; @Su, 2019. @Su et al., 2020; Review @Hossain et al., 2019; @Niu et al., 2021. Deep learning segmentation: @Long et al., 20115; @Maggio et al., 2016; Review @Zhu et al., 2017; @Li et al., 2019; @Audebert et al., 2019; OCNN @Zhang et al., 2018; @Zhang et al., 2020; @Martins et al., 2020.

Complicated visual features and components as a whole for semantic scene recognition.

Hierarchical scene parsing: @Zhu et al., 2010. Low-level and mid-level features: @Yang et al.,2010; @Chen et al., 2015; @Zhong et al., 2015; Review @Cheng et al., 2017; @Xia et al., 2017.

Deep learning schemes: Transfer learning @Hu et al., 2015; Feature fusion @Li et al., 2017; Chaib et al., 2017; Metric learning @Cheng et al., 2018; Attention mechanism @Wang et al., 2019; Architecture search @Ma et al., 2021; Patch classification @Sharma et al., 2017; @Paoletti et al., 2018; @Sharma et al., 2018; @Liu et al., 2020; Few-shot @Cheng et al., 2021; @Li et al., 2021; Datasets @Long et al., 2021.

Input image

Tile-level scenes

Full-scene semantic structure interpretation that bridges tile-level scene classification toward pixelwise semantic labeling for high-resolution aerial images.

Aerial images with low resolution

- Sizes of objects are smaller than the image resolution
- Spectral and texture attributes are mainly employed
- Pixel sampling and statistical analysis with content attributes

Low resolution image

Pixel-wise image classification

Object-based analysis

- Ground objects as basic units for semantic information identification
- Homogeneous segmentation by spectral, texture, and structural attributes
- lack semantic description, object relation modeling, scale challenge

Image with rich detail

Homogenous segments

Object classification

Segmentation-based Analysis

End2end segmentation

- Simultaneously produce homogeneous segments and semantic classes
- Improved architectures and feature integration to advance accuracy
- Optimization with massive pixel labels, computational burden, generalization

High-resolution aerial image

Convolutional encoder-decoder

Semantic segmentation result

Scene recognition within local area

- Complicated features and content as a whole with high-level knowledge
- Scene representation from handcrafted to deep learning features
- Coarse interpretation result, accuracy saturation of existing datasets

Real-world complex content

Limited classes and scale

Course classification result

Analysis

Pixels are highly related to their neighbors in high resolution aerial images

Low resolution: Isolated pixels as basic semantic units

High resolution: Pixels must be considered with contextual information

Enlarged areas of homogeneity

More rich detail with Noisy information

Analysis

Tile-level representation for high resolution aerial image classification

Outline

Background

Revisiting Aerial Image Interpretation

Introduction to Million-AID

Aerial Scene Classification: A New Benchmark

Knowledge Transfer: From Tile-level to Pixel-level

Conclusions

Tile-level Datasets

Aerial scene datasets

- Small scale and poor diversity: small number of categories and instances
- Accuracy saturation: lack standard evaluation benchmarks

Dataset	#Cat.	#Images per cat.	#Images	Resolution (m)	Image size	GL/IT/SP	Year
UC-Merced	21	100	2,100	0.3	256×256	XXX	2010
WHU-RS19	19	50 to 61	1,013	up to 0.5	600×600	$\times \times \times$	2012
RSSCN7	7	400	2,800		400×400	$\times \times \times$	2015
SAT-4	4	89,963 to 178,034	500,000	1 to 6	28×28	$\times \times \times$	2015
SAT-6	6	10,262 to 150,400	405,000	1 to 6	28×28	XXX	2015
BCS	2	1,438	2,876		600×600	$\times \times \times$	2015
RSC11	11	~100	1,232	~0.2	512×512	$\times \times \times$	2016
SIRI-WHU	12	200	2,400	2	200×200	$\times \times \times$	2016
NWPU-RESISC45	45	700	31,500	0.2 to 30	256×256	XXX	2016
AID	30	220 to 420	10,000	0.5 to 8	600×600	$\times \times \times$	2017
RSI-CB128	45	173 to 1,550	36,000	0.3 to 3	128×128	$\times \times \times$	2017
RSI-CB256	35	198 to 1,331	24,000	0.3 to 3	256×256	$\times \times \times$	2017
Planet-UAS	17		40,408	3 to 5	256×256	$\sqrt{\sqrt{}}$	2017
RSD46-WHU	46	500 to 3,000	117,000	0.5 to 2	256×256	$\times \times \times$	2017
MASATI	7	304 to 1,789	7,389		512×512	$\times \times \times$	2018
EuroSAT	10	2,000 to 3,000	27,000	10	64×64	$\sqrt{\sqrt{}}$	2018
PatternNet	38	800	30,400	0.06 to 4.7	256×256	$\times \times \times$	2018
fMoW	62		132,716	0.5	74×58 to 16184×16288	$\sqrt{\sqrt{\sqrt{1}}}$	2018
WiDS Datathon 2019	2		20,000	3	256×256	XXX	2019
Optimal-31	31	60	1,860		256×256	$\times \times \times$	2019
BigEarthNet	43	328 to 217,119	590,326	10,20,60	20×20,60×60,120×120	$\sqrt{\sqrt{\sqrt{1}}}$	2019
CLRS	25	600	15,000	0.26 to 8.85	256×256	$\times \times \times$	2020
MLRSN	46	1,500 to 3,000	109,161	0.1 to 10	256×256	XXX	2020

Dataset Construction

Semi-automatic scene image collection: integration of public geographical features

Geographical point, line, and plane features

Scene image interpretation

Semantic Categories

- Hierarchical category organization with land use standard
- First-level:
 8 categories
- Second-level:
 28 categories
- Third-level: 37 categories

Multi-class classification:51 fine-grained classes

Multi-label classification:73 hierarchical classes

Dataset Scale

Dataset Diversity

• Over 1M instances with unbalanced distribution: 2k to 45k samples in each category

Geographical Distribution

Scenes around the world: intensively distributed within human inhabited areas

Outline

Background

- Revisiting Aerial Image Interpretation
- Introduction to Million-AID

Aerial Scene Classification: A New Benchmark

Knowledge Transfer: From Tile-level to Pixel-level

Conclusions

Unified implementation of CNN library

Model	#Layers	#Param.	Acc@1 (%)	Year
AlexNet	8	60M	56.52	2012
VGG16	16	138M	73.36	2014
GoogleNet	22	6.8M	69.78	2014
ResNet101	101	44M	77.37	2015
DenseNet121	121	8M	74.43	2017
DenseNet169	169	14 M	75.60	2017

Benchmarking configurations

- Multi-class scene classification: 51 fine-grained scene categories
- Multi-label scene classification: 73 hierarchical semantic categories

Evaluation metrics

- Multi-class scene classification: overall accuracy (OA), average accuracy (AA), Kappa coefficient, mean of intersection-over-union (mIoU)
- Multi-label scene classification: per-class precision (CP), recall (CR), F1 (CF) and overall precision (OP), recall (OR), F1 (OF)

Results

Results of Multi-class scene classification

Performance of Single-label Scene Classification with different CNN models

Metric	AlexNet	VGG16	GoogleNet	ResNet101	DenseNet121	DenseNet169
OA	67.53	77.47	77.37	77.36	79.04	78.99
AA	63.18	74.58	74.86	74.58	76.67	76.67
Kappa	66.61	76.84	76.73	76.73	78.46	78.46

Results on different datasets with our framework

Dataset	AlexNet	VGG16	GoogleNet
AID	86.86	86.59	83.44
AID*	88.79	93.72	92.24
NWPU-RESISC45	85.16	90.36	86.02
NWPU-RESISC45*	87.19	92.76	91.71
Million-AID	67.53	77.47	77.37

OA Comparison Among Different Datasets

* Results using our implemented CNN framework,

Confusion Matrix

Shallow network: AlexNet

Confusion Matrix

Deep network: DenseNet121

Confusion Matrix

Results

Results of Multi-label scene classification

Performance of Multi-label Scene Classification with different CNN models

Model		au = 0.5					au = 0.75					mΔP	
Widder	СР	CR	CF1	OP	OR	OF1	СР	CR	CF1	OP	OR	OF1	
AlexNet	71.45	48.19	57.56	76.19	62.84	68.87	78.89	38.51	51.76	85.65	53.03	65.50	61.76
VGG16	82.26	62.20	70.84	86.98	75.31	80.72	84.61	54.29	66.14	91.70	69.37	78.99	79.13
GoogleNet	51.79	33.99	41.04	88.50	59.47	71.14	50.99	23.76	32.42	94.90	47.02	62.89	60.03
ResNet101	79.38	59.67	68.13	88.74	77.31	82.63	76.83	51.56	61.71	93.05	70.93	80.50	80.42
DenseNet121	79.09	56.21	65.71	89.74	75.10	81.77	76.36	47.75	58.76	94.20	67.72	78.79	78.94
DenseNet169	78.54	61.92	69.24	88.50	78.55	83.23	78.52	55.10	64.76	92.66	73.10	81.72	80.99

Challenging hierarchical multi-label classification

Outline

Background

- Revisiting Aerial Image Interpretation
- Introduction to Million-AID

Aerial Scene Classification: A New Benchmark

Knowledge Transfer: From Tile-level to Pixel-level

Conclusions

Scene Recognition

Transfer Knowledge from ImageNet and Million-AID for scene recognition

Accuracy comparison

Classification accuracy (%) on AID dataset using different initialization schemes

Metric	Pretrain dataset	AlexNet	VGG16	GoogleNet	ResNet101	DenseNet121	DenseNet169
	W/O	33.47 ± 2.15	72.18 ± 0.49	79.05 ± 0.89	49.46 ± 2.07	58.02 ± 0.74	59.16 ± 0.52
OA	ImageNet	88.79 ± 0.40	93.72 ± 0.21	92.24 ± 0.21	94.52 ± 0.25	94.68 ± 0.19	94.76 ± 0.21
	Million-AID	90.70 ± 0.43	95.33 ± 0.28	94.55 ± 0.23	95.40 ± 0.19	95.22 ± 0.26	95.24 ± 0.35
	W/O	33.85 ± 2.35	72.16 ± 0.54	78.88 ± 0.88	49.29 ± 2.06	57.88 ± 0.73	59.04 ± 0.51
AA	ImageNet	88.52 ± 0.39	93.38 ± 0.22	91.78 ± 0.23	94.18 ± 0.29	94.39 ± 0.21	94.44 ± 0.22
	Million-AID	90.46 ± 0.45	95.14 ± 0.27	94.30 ± 0.23	95.17 ± 0.19	94.97 ± 0.26	95.00 ± 0.38
	W/O	31.09 ± 2.24	71.19 ± 0.51	78.31 ± 0.92	47.63 ± 2.15	56.50 ± 0.76	57.69 ± 0.53
Kappa	ImageNet	88.39 ± 0.42	93.49 ± 0.21	91.96 ± 0.22	94.32 ± 0.26	94.49 ± 0.20	94.57 ± 0.22
	Million-AID	90.37 ± 0.44	95.17 ± 0.29	94.35 ± 0.24	95.24 ± 0.20	95.05 ± 0.27	95.07 ± 0.37

Confusion matrices of different learning schemes

Results on AID

Example images and predictions

The black labels are the ground truth. The orange labels indicate predictions by GoogleNet trained from scratch, the plum labels the predictions by DenseNet169 pre-trained on ImageNet, and the green labels the predictions by ResNet101 pre-trained on Million-AID.

Accuracy comparison

Classification accuracy (%) on NWPU-RESISC45 dataset using different initialization schemes

Metric	Pretrain dataset	AlexNet	VGG16	GoogleNet	ResNet101	DenseNet121	DenseNet169
	W/O	37.92 ± 0.70	73.19 ± 0.44	81.77 ± 0.56	58.82 ± 0.74	63.35 ± 0.34	64.51 ± 0.47
OA	ImageNet	87.19 ± 0.26	92.76 ± 0.18	91.71 ± 0.25	94.06 ± 0.16	93.90 ± 0.19	94.11 ± 0.20
	Million-AID	88.24 ± 0.21	93.62 ± 0.20	93.40 ± 0.23	94.20 ± 0.16	94.21 ± 0.20	94.26 ± 0.21
	W/O	37.92 ± 0.70	73.19 ± 0.44	81.77 ± 0.56	58.82 ± 0.74	63.35 ± 0.34	64.51 ± 0.47
AA	ImageNet	87.19 ± 0.26	92.76 ± 0.18	91.71 ± 0.25	94.06 ± 0.16	93.90 ± 0.19	94.11 ± 0.20
	Million-AID	88.24 ± 0.21	93.62 ± 0.20	93.40 ± 0.23	94.20 ± 0.16	94.21 ± 0.20	94.26 ± 0.21
	W/O	36.51 ± 0.72	72.59 ± 0.45	81.36 ± 0.58	57.89 ± 0.75	62.51 ± 0.35	63.70 ± 0.48
Kappa	ImageNet	86.89 ± 0.21	92.60 ± 0.19	91.52 ± 0.26	93.92 ± 0.17	93.76 ± 0.19	93.98 ± 0.20
	Million-AID	87.97 ± 0.21	93.48 ± 0.20	93.25 ± 0.24	94.07 ± 0.16	94.08 ± 0.20	94.13 ± 0.21

Confusion matrices of different learning schemes

Results on NWPU-RESISC45

Example images and predictions

The black labels are the ground truth. The orange labels indicate predictions by GoogleNet trained from scratch, the plum labels the predictions by DenseNet169 pre-trained on ImageNet, and the green labels the predictions by ResNet101 pre-trained on Million-AID.

Semantic Classification

Transfer Knowledge from Million-AID for pixel-level image classification

Ablation Study

Weights influence of different tasks

11.0 11.00			GID		Million-AID			
μg	μm	Kappa (%)	OA (%)	mIoU (%)	Kappa (%)	OA (%)	AA (%)	
0.1	0.9	62.85	69.06	39.88	90.36	90.62	89.55	
0.3	0.7	65.15	71.00	41.85	89.44	89.72	88.91	
0.5	0.5	66.65	72.38	42.71	89.67	89.94	89.14	
0.7	0.3	66.14	72.02	41.75	88.98	89.27	87.84	

Corresponding training loss observation

Comparison

Quantitative comparison using different Modules

Baseline	MSC	HSR	HSI	Kappa (%)	OA (%)	mIoU (%)
\checkmark				51.59	59.09	30.79
\checkmark	\checkmark			66.65	72.38	42.71
\checkmark	\checkmark	\checkmark		66.79	72.52	43.07
\checkmark	\checkmark	\checkmark	\checkmark	67.33	73.03	43.68

Quantitative comparison with SOTA methods

Methods	Kappa	OA (%)
MLC + SGDL	0.145	23.61
SVM + SGDL	0.148	23.92
MLP + SGDL	0.199	30.57
RF + SGDL	0.237	33.70
DeepLab V3+ Mobilenet	0.357	54.64
U-Net	0.439	56.59
PSPNet	0.458	60.73
DeepLab V3+	0.478	62.19
DeepLab V3+	0.598	69.16
PT-GID	0.605	70.04
Ours	0.673	73.03

Comparison

Qualitative comparison with different Modules

Comparison

Qualitative comparison with SOTA methods

Outline

Background

- Revisiting Aerial Image Interpretation
- Introduction to Million-AID
- Aerial Scene Classification: A New Benchmark
- Knowledge Transfer: From Tile-level to Pixel-level

Conclusions

A review of aerial image interpretation

- Classification prototypes develop with the improvement of image resolution
- Pixel-wise, segmentation-based, and tile-level classification methodologies are established, relying on visual characteristics of images with different resolutions

Tile-level scene classification

- We released a new large-scale dataset, Million-AID, for aerial scene classification
- Million-AID shows better transferability than ImageNet for aerial scene classification

Pixel-wise image parsing

• We verify the tremendous potential of transferring scene knowledge of Million-AID to advance aerial image interpretation from tile-level classification to pixel-wise labeling

HANKS 日本語名

School of Computer Science, Wuhan University Institute of Artificial Intelligence, Wuhan University State Key Lab. LIESMARS, Wuhan University Gui-Song Xia (guisong.xia@whu.edu.cn)