

RS IMAGE INTERPRETATION FROM A DATA PERSPECTIVE Diversity, Richness, Scalability (DiRS) : On Benchmarking Remote Sensing Image Interpretation

Gui-Song Xia

guisong.xia@whu.edu.cn

School of Computer Science, Wuhan University Institute of Artificial Intelligence, Wuhan University State Key Lab. LIESMARS, Wuhan University

Jun. 1, 2020

Advanced RS Technology

RS technology has significantly improved the earth observation ability.

Applications of RS Images

Interpretation of RS images plays important roles in many real-world applications.

National security

High definition map

Precision agriculture

Smart city

Disaster assessment

Environ. monitoring

Interpretation of RS Images

Current situation: Increasing demands for automatic interpretation

Satellites on-orbit

Variation: difference in spectral, spatial, and temporal properties

Inconsistency: multi-modal, multi-source RS images

Interpretation of RS Images

Current situation: Increasing demands for automatic interpretation

Large volume of images

• Challenge: geometrical shape, textural attribute, structural characteristic ...

Blooming Data-driven methods

Content interpretation: data-driven methods for RS image interpretation.

Motivation

Huge-volume RS images v.s. limited data with labels

- Ever-growing volume of RS images while very few of them are annotated with valuable information.
- The generalization ability of algorithms for RS image interpreting is of great urgency to be strengthened.

Increasing number of datasets with *different purposes and standards*

- Representative and large-scale RS image datasets with accurate annotations are demanded to narrow the gap between algorithm development and real applications.
- There is a **lack of public platforms** for systematic evaluation and fair comparison of different algorithms.

Outline

Research Focus in the Past Decade

- Guidances to Benchmark RS Image Interpretation
- An Example: Million-AID
- Challenges and Perspectives
- Conclusions

A systematic investigation to the literature

- Journals with good reputation: ISPRS J. P&RS, RSE, TGRS ...
- Meta-data for analysis: 5, 827 surveyed articles over the past decade
- Bibliometric analysis: title/topic/keywords ... concerning image interpretation

Meta-data

Bibliometric analysis

Selected journals

Frequency Terms

- Interpretation mainly focus on *classification* tasks (scene, land cover, ...)
- **Change detection**, **segmentation**, and **object detection** occupy prominent positions
- Deep learning and feature extraction play significant roles in RS image interpretation

Available Datasets for Interpretation

11

RS scene classification datasets

Dataset	#Cat.	#Images per cat.	#Instances	Resolution (m)	Image size	GL/IT/SP	Year
UC-Merced	21	100	2,100	0.3	256×256	$\times \times \times$	2010
WHU-RS19	19	50 to 61	1,013	up to 0.5	600×600	$\times \times \times$	2012
RSSCN7	7	400	2,800	_	400×400	$\times \times \times$	2015
SAT-4	4	89,963 to 178,034	500,000	1 to 6	28×28	$\times \times \times$	2015
SAT-6	6	10,262 to 150,400	405,000	1 to 6	28×28	$\times \times \times$	2015
BCS	2	1,438	2,876	_	600×600	$\times \times \checkmark$	2015
RSC11	11	~ 100	1,232	~ 0.2	512×512	$\times \times \times$	2016
SIRI-WHU	12	200	2,400	2	200×200	$\times \times \times$	2016
NWPU-RESISC45	45	700	31,500	0.2 to 30	256×256	$\times \times \times$	2016
AID	30	220 to 420	10,000	0.5 to 8	600×600	$\times \times \times$	2017
RSI-CB256	35	198 to 1,331	24,000	0.3 to 3	256×256	$\times \times \times$	2017
RSI-CB128	45	173 to 1,550	36,000	0.3 to 3	128×128	$\times \times \times$	2017
Planet-UAS	17	_	40,480	3 to 5	256×256	\checkmark \checkmark \checkmark	2017
RSD46-WHU	46	500 to 3,000	117,000	0.5 to 2	256×256	$\times \times \times$	2017
MASATI	7	304 to 1,789	7,389	_	512×512	$\times \times \times$	2018
EuroSAT	10	2,000 to 3,000	27,000	10	64×64	\checkmark \checkmark \checkmark	2018
PatternNet	38	800	30,400	0.06 to 4.7	256×256	$\times \times \times$	2018
fMoW	62	_	132,716	0.5	74×58 to $16,184 \times 16,288$	\checkmark \checkmark \checkmark	2018
WiDS Datathon 2019	2	_	20,000	3	256×256	$\times \times \times$	2019
Optimal-31	31	60	1,860	_	256×256	$\times \times \times$	2019
BigEarthNet	43	328 to 217,119	590,326	10,20,60	$20 \times 20;60 \times 60;120 \times 120$	\checkmark \checkmark \checkmark	2019
CLRS	25	600	15,000	0.26 to 8.85	256×256	$\times \times \times$	2020
MLRSN	46	1,500 to 3,000	109,161	0.1 to 10	256×256	$\times \times \times$	2020

RS object detection datasets

Datasets	Annot.	#Cat.	#Instances	#Images	Resolution (m)	Image width	GL/IT/SP	Year
TAS	HBB	1	1,319	30	20 -0	792	×××	2008
OIRDS	OBB	5	1,800	900	up to 0.08	256 to 640	~ ~ ~	2009
SZTAKI-INRIA	OBB	1	665	9		~ 800	×××	2012
NWPU-VHR10	HBB	10	3,651	800	0.08 to 2	$\sim 1,000$	$\times \times \times$	2014
DLR-MVDA	OBB	2	14,235	20	0.13	5,616	××✓	2015
UCAS-AOD	OBB	2	14,596	1,510		$\sim 1,000$	×××	2015
VEDAI	OBB	9	3,640	1,210	0.125	512;1,024	< × ×	2016
COWC	CP	1	32,716	53	0.15	2,000 to 19,000	<××	2016
HRSC2016	OBB	26	2,976	1,061	10-00	$\sim 1,100$	$\times \times \times$	2016
RSOD	HBB	4	6,950	976	0.3 to 3	$\sim 1,000$	$\times \times \times$	2017
CARPK	HBB	1	89,777	1,448	10	1,280	××✓	2017
SSDD/SSDD+	HBB/OBB	1	2,456	1,160	1 to 15	\sim 500	××✓	2017
SpaceNet1-6*	Polygon	1	859,982		up to 0.3		~ ~ ~	2018
LEVIR	HBB	3	11,028	22,000	0.2 to 1	800	×××	2018
VisDrone	HBB	10	54,200	10,209	11 11	2,000	$\times \times \times$	2018
xView	HBB	60	1,000,000	1,413	0.3	$\sim 3,000$	~×~	2018
DOTA-v1.0	OBB	15	188,282	2,806	up to 0.3	800 to 13,000	$\times \times \times$	2018
ITCVD	HBB	1	29,088	173	0.1	3,744;5,616	×××	2018
WHU building dataset	Polygon	1	221,107	25,420	0.075 to 2.7	512	×××	2018
DeepGlobe Building	Polygon	2	302,701	24,586	0.3	650	××✓	2018
OpenSARShip	Chip	1	11,346	41	~ 10		~ ~ ~	2018
CrowdAI Mapping Challenge	Polygon	1	2,910,917	341,058		300	$\times \times \times$	2018
Airbus Ship Detection Challenge	Polygon	1	$\sim 131,000$	208,162	20.	768	×××	2018
iSAID	Polygon	15	655,451	2,806	up to 0.3	800 to 4,000	×××	2019
HRRSD	HBB	13	55,740	21,761	0.15 to 1.2	152 to 10,569	$\times \times \times$	2019
DIOR	HBB	20	192,472	23,463	0.5 to 30	800	×××	2019
DOTA-v1.5	OBB	16	402,089	2,806	up to 0.3	800 to 13,000	$\times \times \times$	2019
SAR-Ship-Dataset	HBB	1	5,9535	43,819	up to 3	256	××✓	2019
AIR-SARShip	HBB	1	2,040	300	1;3	1,000	~ ~ ~	2020
HRSID	HBB	1	16,951	5,604	0.5;1;3	800	××✓	2020
RarePlanes	Polygon	1	644,258	50,253	0.3		~×~	2020
DOTA-v2.0	OBB	18	1,793,658	11,268	up to 0.3	800 to 20,000	×××	2020

Available Datasets for Interpretation

RS *semantic segmentation* datasets

Datasets	#Cat.	#Images	Resolution (m)	#Channels	Image size	GL/IT/SP	Year
Kennedy Space Center	13	1	18	224	512×614	XVV	2005
Botswana	14	1	30	242	$1,476 \times 256$	XXX	2005
Salinas	16	1	3.7	224	512×217	××✓	
University of Pavia	9	1	1.3	115	610×340	××✓	
Pavia Centre	9	1	1.3	115 bands	$1,096 \times 492$	××✓	
ISPRS Vaihingen	6	33	0.09	IR,R,G,DSM,nDSM	$\sim 2,500 \times 2,500$	××✓	2012
ISPRS Potsdam	6	38	0.05	IR,RGB,DSM,nDSM	6,000×6,000	~×~	2012
Massachusetts Buildings	2	151	1	RGB	$1,500 \times 1,500$	< < ×	2013
Massachusetts Roads	2	1,171	1	RGB	$1,500 \times 1,500$	< < ×	2013
Indian Pines	16	1	20	224	145×145	~ ~ ~	2015
Zurich Summer	8	20	0.62	NIR, RGB	$1,000 \times 1,150$	~ ~ ~	2015
SPARCS Validation	7	80	30	11	$1,000 \times 1,000$	~ ~ ~	2016
Biome	4	96	30	11	$\sim 9,000 \times 9,000$	~ ~ ~	2017
Inria	2	360	0.3	RGB	$5,000 \times 5,000$	$\times \times \times$	2017
EvLab-SS	10	60	0.1 to 2	RGB	$4,500 \times 4,500$	××✓	2017
RIT-18	18	3	0.047	6	9,000×6,000	~ ~ ~	2017
CITY-OSM	3	1,671	0.1	RGB	$2,500 \times 2,500$ to $3,300 \times 3,300$	$\times \times \times$	2017
Dstl-SIFD*	10	57	up to 0.3	up to 16	\sim 3,350×3,400	~×~	2017
IEEE GRSS Data Fusion Contest 2017	17	30	1.4	9	643×666;374×515	~ ~ ~	2017
IEEE GRSS Data Fusion Contest 2018	20	1	1	48	$4,172 \times 1,202$	~ ~ ~	2018
Aeroscapes	11	3,269		RGB	$720 \times 1,280$	$\times \times \times$	2018
DLRSD	17	2.100	0.3	RGB	256×256	$\times \times \times$	2018
DeepGlobe Land Cover	7	1,146	0.5	RGB	$2,448 \times 2,448$	××✓	2018
So2Sat LCZ42	17	400.673	10	10	32×32	<××	2019
SEN12MS	33	180,662 triplets	10 to 50	up to 13	256×256	<×<	2019
95-Cloud	1	43,902	30	NIR,RGB	384×384	~×~	2019
Shakeel et al.	1	2,682	0.3	RGB	300×300	$\times \times \times$	2019
ALCD Cloud Masks	8	38	10	RGB	$1,830 \times 1,830$	~ ~ ~	2019
SkyScapes	31	16	0.13	RGB	5,616×3,744	$\times \times \times$	2019
DroneDeploy	7	55	0.1	RGB	up to 12,039×13,854	$\times \times \times$	2019
Slovenia LULC	10	940	10	6	5.000×5.000	~ ~ ~	2019
LandCoverNet	7	1.980	10	NIR.RGB	256×256	~ ~ ~	2020
UAVid	8	420	_	RGB	$\sim 4.000 \times 2.160$	××✓	2020
GID	15	150	0.8 to 10	4	6.800×7.200	~ ~ ~	2020
LandCover.ai	3	41	0.25.0.5	RGB	$9,000 \times 9,500; 4,200 \times 4,700$	<××	2020
Agriculture-Vision	9	94,986	0.1:0.15:0.2	NIR.RGB	512×512	XXX	2020
S2CMC*	18	513	20	13	$1,024 \times 1,024$	~ ~ ~	2020

RS change detection datasets

Datasets	#Cat.	#Image pairs	Resolution (m)	#Channels	Image size	GL/IT/SP	Year
SZTAKI AirChange	2	13	1.5	RGB	952×640	\times \checkmark \times	2009
AICD	2	1,000	0.5	115	800×600	$\times \times \times$	2011
Taizhou Data	4	1	30	6	400×400	~ ~ ~	2014
Kunshan Data	3	1	30	6	800×800	~ ~ ~	2014
Cross-sensor Bastrop	2	4	30,120	7,9	$444 \times 300; 1,534 \times 808$	~ ~ ~	2015
MtS-WH	9	1	1	NIR, RGB	$7,200 \times 6,000$	~ ~ ~	2017
Yancheng	4	2	30	242	400×145	~ ~ ~	2018
GETNET dataset	2	1	30	198	463×241	XVV	2018
Urban-rural boundary of Wuhan	20	1	4/30	4, 9	960×960	~ ~ ~	2018
Hermiston City, Oregon	5	1	30	242	390×200	~ ~ ~	2018
OSCD	2	24	10	13	600×600	~ ~ ~	2018
WHU building dataset	2	1	0.2	RGB	$32,507 \times 15,354$	~ ~ ~	2018
Season-varing dataset	2	16,000	0.03 to 0.1	RGB	256×256	$\times \times \times$	2018
ABCD	2	16,950	0.4	RGB	$128 \times 128;160 \times 160$	\times \checkmark \times	2018
California flood dataset	2	1	5,30	RGB ,11	1534×808	~ ~ ~	2019
López-Fandiño et al.	5	2	20	224	$984 \times 740;\ 600 \times 500$	XVV	2019
xBD	6	11,034	up to 0.8	RGB	$1,024 \times 1,024$	~ ~ ~	2019
HRSCD	6	291	0.5	RGB	$10,000 \times 10,000$	~ ~ ~	2019
LEVIR-CD	2	637	0.5	RGB	$1,024 \times 1,024$	$\times \times \times$	2020
SECOND	30	4,214	0.5 to 3	RGB	512×512	$\times \times \times$	2020
Google Dataset	2	1,067	0.55	RGB	256×256	< < ×	2020
Zhang et al.	2	4	2;2.4;5.8	NIR, RGB	1,431×1,431; 458×559; 1,154×740	~ ~ ~	2020
Hi-UCD	9	1,293	0.1	RGB	$1,024 \times 1,024$	_/_/Y	2020
SpaceNet7	_	24	4	RGB	_	~ ~ ~	2020
S2MTCP	2	1,520	up to 10	13	600×600	~ ~ ~	2021 12

Some Critical Reviews

Categories involved in interpretation

- **Small number** of categories, content interpretation for **specific objects**
- Categories with *equal relationship*, chaotic management for semantic information
- Complex semantic categories and relationships in real applications, e.g., LULC

Dataset annotation

- Nearly all manually annotated by experts, extensive labor remains to relieve
- Visualization for large scale, hyperspectral RS images annotation is demanded
- **Few from** application departments

NPWU VHR, 800 images, manually annotated

Image source

- Optical images (Google Earth) as data standard since spatial pattern, visual texture, structural information are more concerned (e.g., for scene/object recognition)
- Hyperspectral, SAR images for abnormal object detection by the physical property

Dataset scale

- Limited number, small image patches, performance saturation
- Lack of image variation, sample diversity, and content representation
- weak generalization ability of interpretation algorithms

Multi-modal image source

Simple scenes and complex reality

Outline

Background

Research Focus in the Past Decade

Guidances to Benchmark RS Image Interpretation

An Example: Million-AID

Challenges and Perspectives

Conclusions

Guidances to Benchmark RS II

Alaorithm

Toward real-world scenarios *rather than specific algorithms*

- Model training, testing, and screening for practical applications
- Rich samples with variation in background, scale, imaging conditions, ...

Annotation by application sides rather than algorithm developers

Label images and samples considering practical challenges in applications

Algorithm

Images

DiRS for dataset construction

- **Diversity:** between-/within-class diversity, complementarity of features
- *Richness*: large-scale images, sufficient samples, diverse characteristics
- Scalability: sufficient space for data augmentation, sustainable availability

Geographic Information Integration

Coordinates Collection for RS Image Acquisition

Geographic information utilization

- Rich positional data with millions of point, line, and region objects
- Inherent semantic tags for images of interest, image acquisition by Map API

Searched baseball fields using Google Map API

Geographic Information Integration

Coordinates Collection for RS Image Acquisition

Open source data

- Geographic data with rich semantic information that is timely updated, low-cost and with large amount, e.g., OSM, WikiMapia ...
- Excellent interface for data customization, information aligned with different maps

Elements of interest extracted from OSM

Geographic Information Integration

Coordinates Collection for RS Image Acquisition

Geodatabase integration

- Public geodatabases released by state institutions and communities
- Domain-specific geodatabase that is publicly available

Public geodatabases available for image coordinates collection

Manual Annotation

- Quality guarantee, but labor-intensive and time-consuming
- Hard to meet the scale requirements particularly for data-driven methods

Automatic Annotation

- Reduce the cost of annotation by leveraging learning models
- Bias problem deriving from the initialized data and model capability

Annotated samples

Interactive Annotation

- Annotation with human-computer interaction, semi-automatic annotation
- Guarantee for quality and efficiency, toward large-scale dataset construction

General workflow of Semi-automatic annotation in RS images

- **Rules and Samples:** annotation without ambiguity, specific samples for instructions
- **Training of Annotators:** well-qualified annotators for quality guarantee
- Multi-stage Pipeline: annotation task decomposition
- **Grading and Reward:** mechanism for incompetent/competent annotators
- Multiple Annotations: merge multiple annotations
- Annotation Review: expert/peer review and quality rating
- Spot Check and Assessment: gold data for annotation quality assurance

Outline

Background

Research Focus in the Past Decade

Guidances to Benchmark RS Image Interpretation

An Example: Million-AID

Challenges and Perspectives

Conclusions

Scene Classification

- High-level knowledge expression to RS image contents
- Semantic information recognition to local areas of RS images

Category Organization

Chinese Land Use Classification Criteria

The hierarchical scene category network of Million-AID

8 major categories with 51 sub-categories

Semantic Coordinates Collection

Point coordinates obtained by Google Map API

The points of searched tennis courts shown in Google Earth. We consider the tennis courts as point ground features and the Google Map API is employed for coordinates collection.

Semantic Coordinates Collection

Point coordinates integrated from Geodatabase

The points of wind turbines extracted from USWTDB and integrated in Google Earth. Over 60, 000 objects of wind turbines can be collected from the database.

Semantic Coordinates Collection

Line features extracted from OSM

The river lines within a local area of China collected from OSM and displayed in Google Earth.

Semantic Coordinates Collection

Plane features customized on OSM

The illustration of searching scenes of airports around the world. An airport in OSM contains a large amount of semantic tags, which can be employed to search it with specific key-value attributes.

- Scene Image Acquisition
 - Image block produced by line, point, and plane data

The acquisition of RS scene images based on the collected geographic point, line and area data. **Points**: centers of scene blocks. **Lines**: sampled by intervals. **Planes**: sampled by mesh grids.

A Glimpse of Comparison

Million-AID: DiRS, better approximate real applications

- ➤ Categories: 21
- ➢ Image size: 256x256
- Resolution: ~ 0.3m
- Number of images: 2100

- ➤ Categories: 19
- ➢ Image size: 600x600
- Resolution: 0.2 ~ 10m
- ➢ Number of images: 950

- Categories: 51
- Image size: 110~30,000
- \succ Resolution: 0.2 ~ 153m
- > Number of images: 1M

Outline

Background

- Research Focus in the Past Decade
- Guidances to Benchmark RS Image Interpretation
- An Example: Million-AID
- Challenges and Perspectives
- Conclusions

Challenges and Perspectives

How to speed up the annotation process?

Visualization technology for RS image Annotation

- Hyperspectral images: band selection, dimension reduction, clustering?...
- *Large-scale images:* how to display?
- **SAR images:** images/signal expression with physical means?

Annotation Efficiency

- Annotation tools: professional tools for RS image annotation
- Noisy annotations: noise cleansing, performance impact, noise tolerant algorithms
- **Cooperation with application departments:** from production data to benchmarks?

Speed up the annotation process

Annotation tools for image dataset construction

No.	Name	Year	Description
1	LabelMe	2008	An online image annotation tool that supports various annotation primitives, including polygon, rectangle, circle, line and point.
2	Video Annotation Tool from Irvine, California (VATIC)	2012	An online tool that efficiently scaling up video annotation with crowdsourced marketplaces (<i>e.g.</i> , AMT).
3	LabelImg	2015	A popular graphical image annotation application that labels objects in images with bounding boxes.
4	Visual Object Tagging Tool (VOTT)	2017	An open source annotation and labeling tool for image and video assets, extensible for importing/exporting data to local or cloud storage providers, including Azure Blob Storage and Bing Image Search.
5	Computer Vision Annotation Tool (CVAT)	2018	A universal data annotation approach for both individuals and teams, supporting large-scale semantic annotation for scene classification, object detection and image segmentation.
6	Image Tagger 20		An open source online platform to create and manage image data and diverse labels (<i>e.g.</i> , bounding box, polygon, line and point), with friendly support for collaborative image labeling.
7	Polygon RNN++	2018	A deep learning-based annotation strategy, producing polygonal annotation of objects segmentation interactively using humans-in-the-loop.
8	Makesence.AI	2019	An open source and online image annotation platform, using different artificial model to give recommendations as well as automate repetitive and tedious labeling activities.
9	VGG Image Annotator (VIA)	2019	A simple and standalone manual annotation software for image and video, providing rich labels like point, line, polygon as well as circle and ellipse without project management.

Outline

Background

- Research Focus in the Past Decade
- Guidances to Benchmark RS Image Interpretation
- An Example: Million-AID
- Challenges and Perspectives

Conclusions

A review of annotated datasets for RS image interpretation

- Covering literature published over the past decade
- A systematic review of the existing RS image datasets concerning the current mainstream of RS image interpretation tasks

Guidances to build RS image benchmarks

- DiRS: on creating benchmark datasets for RS image interpretation
- A picture of coordinates collection, methodology for RS image dataset construction

An example for dataset construction : Million-AID

• A large-scale benchmark dataset for RS image scene classification

FANKS 导翻题

School of Computer Science, Wuhan University Institute of Artificial Intelligence, Wuhan University State Key Lab. LIESMARS, Wuhan University Gui-Song Xia (guisong.xia@whu.edu.cn)